Plant-derived decapeptide OSIP108 interferes with Candida albicans biofilm formation without affecting cell viability.

نویسندگان

  • Nicolas Delattin
  • Katrijn De Brucker
  • David J Craik
  • Olivier Cheneval
  • Mirjam Fröhlich
  • Matija Veber
  • Lenart Girandon
  • Talya R Davis
  • Anne E Weeks
  • Carol A Kumamoto
  • Paul Cos
  • Tom Coenye
  • Barbara De Coninck
  • Bruno P A Cammue
  • Karin Thevissen
چکیده

We previously identified a decapeptide from the model plant Arabidopsis thaliana, OSIP108, which is induced upon fungal pathogen infection. In this study, we demonstrated that OSIP108 interferes with biofilm formation of the fungal pathogen Candida albicans without affecting the viability or growth of C. albicans cells. OSIP108 displayed no cytotoxicity against various human cell lines. Furthermore, OSIP108 enhanced the activity of the antifungal agents amphotericin B and caspofungin in vitro and in vivo in a Caenorhabditis elegans-C. albicans biofilm infection model. These data point to the potential use of OSIP108 in combination therapy with conventional antifungal agents. In a first attempt to unravel its mode of action, we screened a library of 137 homozygous C. albicans mutants, affected in genes encoding cell wall proteins or transcription factors important for biofilm formation, for altered OSIP108 sensitivity. We identified 9 OSIP108-tolerant C. albicans mutants that were defective in either components important for cell wall integrity or the yeast-to-hypha transition. In line with these findings, we demonstrated that OSIP108 activates the C. albicans cell wall integrity pathway and that its antibiofilm activity can be blocked by compounds inhibiting the yeast-to-hypha transition. Furthermore, we found that OSIP108 is predominantly localized at the C. albicans cell surface. These data point to interference of OSIP108 with cell wall-related processes of C. albicans, resulting in impaired biofilm formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Linear 19-Mer Plant Defensin-Derived Peptide Acts Synergistically with Caspofungin against Candida albicans Biofilms

Public health problems are associated with device-associated biofilm infections, with Candida albicans being the major fungal pathogen. We previously identified potent antibiofilm combination treatment in which the antifungal plant defensin HsAFP1 is co-administered with caspofungin, the preferred antimycotic to treat such infections. In this study, we identified the smallest linear HsAFP1-deri...

متن کامل

Derivatives of the mouse cathelicidin-related antimicrobial peptide (CRAMP) inhibit fungal and bacterial biofilm formation.

We identified a 26-amino-acid truncated form of the 34-amino-acid cathelicidin-related antimicrobial peptide (CRAMP) in the islets of Langerhans of the murine pancreas. This peptide, P318, shares 67% identity with the LL-37 human antimicrobial peptide. As LL-37 displays antimicrobial and antibiofilm activity, we tested antifungal and antibiofilm activity of P318 against the fungal pathogen Cand...

متن کامل

Stenotrophomonas maltophilia interferes via the DSF-mediated quorum sensing system with Candida albicans filamentation and its planktonic and biofilm modes of growth.

Stenotrophomonas maltophilia is a nosocomial pathogen of increasing importance. S. maltophilia K279a genome encodes a diffusible signal factor (DSF) dependent quorum sensing (QS) system that was first identified in Xanthomonas campestris pv. campestris. DSF from X. campestris is a homologue of farnesoic acid, a Candida albicans QS signal which inhibits the yeast-to-hyphal shift. Here we describ...

متن کامل

Consequences of lysine auxotrophy for Candida albicans adherence and biofilm formation.

A number of factors are known to be involved in Candida albicans virulence, although biofilm development on the surfaces of indwelling medical devices is considered to promote superficial or systemic disease. Based on previously reported up-regulation of saccharopine and acetyllysine in biofilm cells and activation of the lysine biosynthesis/degradation pathway, we investigated the consequences...

متن کامل

Effect of tunicamycin on Candida albicans biofilm formation and maintenance.

BACKGROUND Candida albicans is a common opportunistic pathogen of the human body and is the frequent causative agent of candidiasis. Typically, these infections are associated with the formation of biofilms on both host tissues and implanted biomaterials. As a result of the intrinsic resistance of C. albicans biofilms to most antifungal agents, new strategies are needed to combat these infectio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Antimicrobial agents and chemotherapy

دوره 58 5  شماره 

صفحات  -

تاریخ انتشار 2014